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Abstract—Detection of interesting (e.g., coherent or anomalous)
clusters has been studied extensively on plain or univariate
networks, with various applications. Recently, algorithms have
been extended to networks with multiple attributes for each node
in the real-world. In a multi-attributed network, often, a cluster of
nodes is only interesting for a subset (subspace) of attributes, and
this type of clusters is called subspace clusters. However, in the
current literature, few methods are capable of detecting subspace
clusters, which involves concurrent feature selection and network
cluster detection. These relevant methods are mostly heuristic-
driven and customized for specific application scenarios.

In this work, we present a generic and theoretical framework
for detection of interesting subspace clusters in large multi-
attributed networks. Specifically, we propose a subspace graph-
structured matching pursuit algorithm, namely, SG-Pursuit,
to address a broad class of such problems for different score
functions (e.g., coherence or anomalous functions) and topology
constraints (e.g., connected subgraphs and dense subgraphs). We
prove that our algorithm 1) runs in nearly-linear time on the
network size and the total number of attributes and 2) enjoys
rigorous guarantees (geometrical convergence rate and tight
error bound) analogous to those of the state-of-the-art algorithms
for sparse feature selection problems and subgraph detection
problems. As a case study, we specialize SG-Pursuit to optimize
a number of well-known score functions for two typical tasks,
including detection of coherent dense and anomalous connected
subspace clusters in real-world networks. Empirical evidence
demonstrates that our proposed generic algorithm SG-Pursuit
is superior over state-of-the-art methods that are designed
specifically for these two tasks.

I. INTRODUCTION

With recent advances in hardware and software technolo-

gies, the huge volumes of data now being collected from

multiple sources are naturally modeled as multi-attributed
networks. For example, massive multi-attributed biological

networks have been created by integrating gene expression

data with secondary data such as pathway or protein-protein

interaction data for improved outcome prediction of cancer

patients [23]. Other examples include the multi-attributed

networks that combine “Big data” (e.g., Twitter feeds) and

traditional surveillance data for influenza studies [10] and

the social networks that contain both the friendship relations

and user attributes such as interests, frequencies of keywords

mentioned in posts, and demographics [16].

As one of the major tasks in network mining, the detec-

tion of interesting clusters in attributed networks, such as

* These two authors contributed equally.

Fig. 1: A social network with three attributes (age, PC games,

and sport) in each user node and one potential coherent dense

subspace cluster (highlighted in the shaded region and blue-

colored texts) that has a coherent subset of attributes (age and

PC games) and a dense subgraph of nodes (4, 5, 6, and 7).

This cluster might be of interest to video game producers.

(Adapted from [16])

Fig. 2: A health surveillance network of emergency depart-

ments (EDs) with three attributes (counts of cases of three

different ICD-9 disease symptoms [25], including cough,

headache, chest pain) in each ED node and one potential

anomalous connected subspace cluster (highlighted in the

shaded region and blue-colored texts) that has a anomalous

subset of attributes (cough and headache) and a connected

subgraph of nodes (1, 2, 3, 5, and 6). The counts of these

two attributes within the subgraph are abnormally higher

than those outside the subgraph. The anomalous connected

subspace cluster is used for disease outbreak detection.

coherent or anomalous clusters, has attracted a great deal of

attention in many applications, including medicine and public

health [16], [25], law enforcement [35], cyber security [28],

among others [32], [33], [35]. To deal with the multiple

or even high-dimensional attributes, most existing methods
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TABLE I: Comparison of related work (“Generality” refers to the capability of a method to support different score functions

and topological constraints on subspace clusters on attributed networks. “Good tradeoff” refers to the good trade-off between

tractability and quality guarantee on subspace clusters, when the number of feasible subgraphs (neighborhoods) is large.

Cluster detection

On attri
buted networks

Attri
bute subspace

Coherent dense
clusters

Anomalous connected clusters

Good trade-off

Generality

METIS [21], Spectral [26], Co-clustering [11] �
PICS [2], CODA [14] � �
NPHGS [7], EDAN [35], CSGN [31], GSSO [39], GSPA [8] � � �
CoPaM [24], Gamer [15], [16], FocusCO [30], AW-NCut [17] � � � �
SODA [18], AMEN [29] � � � �
SG-Pursuit [this paper] � � � � � � �

either utilize all the given attributes [14], [27] or perform a

unsupervised feature selection as a preprocessing step [37].

However, as demonstrated in a number of studies [15]–[17],

[29], [30], clusters of interest in a multi-attributed network

are often subspace clusters, each of which is defined by a
cluster of nodes and a relevant subset of attributes. For

example, in social networks, it is very unlikely that people

are similar within all of their characteristics [16]. In health

surveillance networks, it is very rare that outbreaks of different

disease types have identical symptoms [25]. In order to detect

subspace clusters, it is required to conduct feature selection

and cluster detection, concurrently, as without knowing the

true clusters of nodes, it is difficult to identify their relevant

attributes, and vice versa.

In recent years, a limited number of methods have been pro-

posed to detect subspace clusters, which fall into two main cat-

egories, including detection of coherent dense subspace clus-

ters and detection of anomalous connected subspace clusters.

The methods for detecting coherent dense subspace clusters
search for subsets of nodes that show high similarity in subsets

of their attributes and that are as well densely connected within

the input network. Customized algorithms are developed for

specific combinations of similarity functions of attributes (e.g.,

threshold based [16], [17] and pairwise distance based [30]

functions) and density functions of nodes [15]–[17], [24], [30].

The methods for detecting anomalous connected subspace
clusters search for subsets of nodes that are significantly

different from the other nodes on subsets of their attributes

and that are as well connected (but not necessary dense) within

the input network. The connectivity constraint ensures that the

clusters of nodes reflect changes due to localized in-network

processes. All the existing methods in this category consider

a small set of neighborhoods (e.g., social circles and ego

networks [29], subgraphs isomorphic to a query graph [18],

and small-diameter subgraphs [25]), and identify anomalous

subspace clusters among only these given neighborhoods.

However, the aforementioned methods have two main lim-

itations: 1) Lack of generality. All these methods are cus-

tomized for specific score functions of attributes and topo-

logical constraints on clusters, and may be inapplicable if

the functions or constraints are changed. As discussed in

recent surveys [1], the definition of an interesting subgraph

pattern, in which subspace clusters is a specific type, is

meaningful only under a given context or application. There is

a strong need of generic methods that can handle a broad class

of score functions, such as parametric/nonparametric scan

statistic functions [7], discriminative functions [33], and least

square functions [9]; and topological constraints, such as the

types of subgraphs aforementioned [16], [18], [25], [29], [30],

compact subgraphs [35], trees [22], and paths [3]. 2) Lack of
good tradeoff between tractability and quality guarantees.
The methods for detecting anomalous connected subgraphs

conduct exhaust search over all feasible subgraphs (neighbor-

hoods), but will be intractable when the number of feasible

subgraphs is large (e.g., all connected subgraphs). Several

methods for detecting coherent dense subspace clusters are

tractable to large networks, but do not provide worst-case

theoretical guarantees on the quality of the detected clusters.

This paper presents a novel generic and theoretical frame-

work to address the above two main limitations of existing

methods for a broad class of interesting subspace cluster

detection problems. In particular, we consider the general form

of subspace cluster detection as an optimization problem that

has a general score function measuring the interestingness

of a subset of features and a cluster of nodes, a sparsity

constraint on the subset of features, and topological constraints

on the cluster of nodes. We propose a novel subspace graph-

structured matching pursuit algorithm, namely, SG-Pursuit,

to approximately solve this general problem in nearly-linear

time. The key idea is to iteratively search for a close-to-optimal

solution by solving easier subproblems in each iteration,

including i) identification of topological-free clusters of nodes

and a sparsity-free subset of attributes that maximizes the score

function in a sub-solution-space determined by the gradient

of the current solution; and ii) projection of the identified

intermediate solution onto the solution-space defined by the

sparsity and topological constraints. The contributions of this

work are summarized as follows:

• Design of a generic and efficient approximation algo-
rithm for the subspace cluster detection problem. We

propose a novel generic algorithm, namely, SG-Pursuit,

to approximately solve a broad class of subspace cluster

detection problems that are defined by different score func-

tions and topological constraints in nearly-linear time. To
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the best of our knowledge, this is the first-known generic

algorithm for such problems.

• Theoretical guarantees and connections. We present a

theoretical analysis of the proposed SG-Pursuit and

show that SG-Pursuit enjoys a geometric rate of con-

vergence and a tight error bound on the quality of the

detected subspace clusters. We further demonstrate that

SG-Pursuit enjoys strong guarantees analogous to state-

of-the-art methods for sparse feature selection in high-

dimensional data and for subgraph detection in attributed

networks.

• Comprehensive experiments to validate the effectiveness
and efficiency of the proposed techniques. SG-Pursuit
was specialized to conduct the specific tasks of coherent

dense subspace cluster detection and anomalous connected

subspace cluster detection on several real-world data sets.

The results demonstrate that SG-Pursuit outperforms

state-of-the-art methods that are designed specifically for

these tasks, even though SG-Pursuit is designed to

address general subspace cluster detection problems.

The rest of this paper is organized as follows. Section II

introduces the proposed method SG-Pursuit and analyzes

its theoretical properties. Section III discusses applications

of our proposed algorithm for the tasks of coherent dense

subspace cluster detection and anomalous connected subspace

cluster detection. Experiments on several real-world bench-

mark datasets are presented in Section IV. Section V concludes

the paper and describes future work.

II. METHOD SG-PURSUIT

In this section we first formulate the problem of subspace

cluster detection formally. Next, we present the algorithm

SG-Pursuit and analyze its theoretical properties, including

its convergence rate, error-bound, and time complexity.

A. Problem Formulation

We consider a multi-attributed network that is defined as

G = (V,E, w), where V = {1, · · · , n} is the ground set of

nodes of size n, E ⊆ V × V is the set of edges, and the

function w : V → R
p defines a vector of attributes of size p

for each node v ∈ V: w(v) ∈ R
p. For simplicity, we denote

the attribute vector w(v) by wv .

We introduce two vectors of coefficients, including x ∈ R
n

and y ∈ R
p, that will be optimized for detecting the most

interesting subspace cluster in G, where x identifies the cluster

(subset) of nodes and y identifies their relevant attributes. In

particular, the vector x refers to the vector of coefficients of

the nodes in V. Each node i ∈ V has a coefficient score

xi indicating the importance of this node in the cluster of

interest. If xi �= 0, it means that the node i belongs to the

cluster of interest. Similarly, the vector y refers to the vector

of coefficients of the p attributes. Each attribute j ∈ {1, · · · , p}
has a coefficient score yj indicating the relevance of this

attribute to the clusters of interest. Let supp(x) be the support

set of indices of nonzero entries in x: supp(x) = {i | xi �= 0}.
Then the support set supp(x) represents the subset of nodes

Fig. 3: An example function of f(x, y) (negative squared error

function (2)) for robust linear regression models that has been

widely used in anomaly detection tasks [9], [34], [36], [38]. In

this example, the vector x is a vector of sparse coefficients of

the nodes in the input network that must satisfy the topological

constraints (M(k = 6)): the size of supp(x) is at most 6. The

residual vector y is sparse by the constraint ‖y‖0 ≤ s and is

used to identify anomalous attributes.

that belong to the cluster of interest. The support set supp(y)
represents the subset of relevant attributes. We define the

feasible space of clusters of nodes as

M(k) = {S | S ⊆ V; |S| ≤ k; GS satisfies predefined

topological constraints. },
where S refers to a subset of nodes in V, GS = (S,E ∩

S × S) refers to the subgraph induced by S, |S| refers to the

total number of nodes in S, and k refers to an upper bound

on the size of the cluster. The topological constraints can be

any topological constraints on GS , such as connected sub-

graphs [25], [29], dense subgraphs [16], [30], subgraphs that

are isomorphic to a query graph [18], compact subgraphs [35],

trees [22], and paths [3], among others.

Based on the above notations, we consider a general form
of the subspace cluster detection problem as

max
x∈Cx,y∈Cy

f(x, y) s.t. supp(x) ∈M(k) and ‖y‖0 ≤ s, (1)

where f(x, y) : R
n × R

p → R is a score function that

measures the overall level of interestingness of the subspace

clusters indicated by x and y; Cx ⊆ R
n represents a convex set

in the Euclidean space R
n, Cy ⊆ R

p represents a convex set in

the Euclidean space R
p, M(k) refers to the feasible space of

clusters of nodes as defined a above, and s refers to an upper

bound on the number of attributes relevant to the subspace

clusters of interest. The parameters k and s are predefined by

the user. Let x̂ and ŷ be the solution to Problem (1). Denote by

S the support set supp(x̂) that represents the most interesting

cluster of nodes, and by R the support set supp(ŷ) represents

the subset of relevant attributes. The most interesting subspace

cluster can then be identified as (S,R).
As illustrated in Figure 3, an example score function f(x, y)

is a negative squared error function for robust linear regression
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that has been widely used in anomaly detection tasks [9], [34],

[36], [38]:

f(x, y) = −‖c−WTx− y‖22, (2)

where x ∈ Cx := R
n, y ∈ Cy := R

p, c ∈ R
p refers to a vector

of observed response values, and W = [w1, w2, · · · , wn]
T ∈

R
n×p. The residual vector y is used to identify anomalous

attributes, and its sparsity s is usually much smaller than p (the

total number of attributes). There are also applications where

both x and y need to be vectors of positive coefficients [38]:

Cx := R
n
+ and Cy := R

p
+.

Remark 1. There are scenarios where x is considered as a
vector of binary values, instead of numerical coefficients, and
the resulting problem becomes a discrete optimization problem
that is NP-hard in general and does not have known solutions.
In this case, by relaxing the input domain of x from {0, 1}n to
the convex set Cx := [0, 1]n and replacing the score function
f(x, y) with its tight concave surrogate function, the resulting
relaxed problem becomes a special case of Problem (1). In
particular, when the cost function is a supermodular function
of x, a tight concave surrogate function can be obtained based
on Lobasz extensions, such that the solutions to the relaxed
problem are identical to the solutions to the original discrete
optimization problem. In addition, the same equivalence also
holds for a number of popular non-convex functions that
are non-supermodular, such as Hinge and Squared Hinge
functions, and their tight concave surrogate functions have
been studied in recent work [6], [36].

Remark 2. Problem (1) considers the detection of the most
interesting subspace cluster in a multi-attributed network.
There are applications, where top g most interesting subspace
clusters are of interest, where g is predefined by the user.
In this case, the g clusters can be identified one-by-one,
repeatedly, by solving Problem (1) for each subspace cluster,
excluding the clusters that have been found.

B. Head and Tail Projections on M(k)

Before we present our proposed algorithm SG-Pursuit,

we first introduce two major components related to the support

of the topological constraints “supp(x) ∈ M(k)”, including

head and tail projections. The key idea is that, suppose we

are able to find a good intermediate solution x̂ that does not

satisfy this constraint, these two types of projections will be

used to find good approximations of x̂ in the feasible space

defined by M(k).

• Tail Projection T(x) [20]: Find a S ⊆ V such that

‖x− xS‖2 ≤ cT · min
S′∈M(k)

‖x− xS′‖2, (3)

where cT ≥ 1, and xS is the restriction of x to indices

in S: we have (xS)i = xi for i ∈ S and (xS)i = 0
otherwise. When cT = 1, T(x) returns an optimal solution

to the problem: minS′∈M(k) ‖x − xS′‖2. When cH < 1,

T(x) returns an approximate solution to this problem with

the approximation factor cT .

• Head projection H(x) [20]: Find a S ⊆ V such that

‖xS‖2 ≥ cH · max
S′∈M(k)

‖xS′‖2, (4)

where cH ∈ [0, 1]. When cH = 1, H(x) returns an optimal

solution to the problem: maxS′∈M(k) ‖xS′‖2. When cH < 1,

H(x) returns an approximate solution to this problem with

the approximation factor cH .

It can be readily proved that, when cT = 1 and cH = 1, both

T(x) and H(x) return the same subset S, and the correspond-

ing vector xS is optimum for the standard projection oracle

in the traditional projected gradient descent algorithm [4]:

arg min
x′∈Rn

‖x− x′‖2 s.t. supp(x′) ∈M(k), (5)

which is NP-hard in general for popular topological con-

straints, such as connected subgraphs and dense sub-

graphs [31]. However, when cT > 1 and cH < 1, T(x) and

H(x) return different approximate solutions to the standard

projection problem (5). Although the head and tail projections

are NP-hard problems when cT = 1 and cH = 1, these two

projections can often be implemented in nearly-linear time

when we allow relaxations on cT and cH : cT > 1 and cH < 1.

For example, when the topological constraint considered in

M(k) is that: “GSi
is a connected subgraph”, where Si is a

specific cluster of nodes, the resulting head and tail projections

can be implemented in nearly-linear time with the parameters:

cT =
√
7 and cH =

√
1/14 [20]. The impact of these

two parameters on the performance of SG-Pursuit will be

discussed in Section II-D.

As discussed above, the head and tail projections can be

considered as two different approximations to the standard

projection problem (5). It has been demonstrated that the joint

utilization of both head and tail projections is critical in design

of approximate algorithms for network-related optimization

problems [8], [19], [20], [39].

C. Algorithm Details

We propose a novel Subspace Graph-structured matching

Pursuit algorithm, namely, SG-Pursuit, to approxi-

mately solve Problem (1) in nearly-linear time. The key

idea is to iteratively search for a close-to-optimal solution

by solving easier subproblems in each iteration i, including

i) identification of the intermediate solution (bix, biy) that

maximizes the score function f(x, y) in a solution-subspace

determined by the partial derivatives of the function on the

current solution, including ∇xf(x
i, yi) and ∇yf(x

i, yi), and

ii) projection of the intermediate solution (bix, biy) to the fea-

sible space defined by the topological constraints: “supp(x) ∈
M(k)”, and the sparsity constraint: “‖y‖0 ≤ s”. The projected

solution (xi+1, yi+1) is then the updated intermediate solution

returned by this iteration.

The main steps of SG-Pursuit are shown in Algorithm 1.

The procedure generates a sequence of intermediate solutions

(x0, y0), (x1, y1), · · · , from an initial solution (x0, y0). At

the i-th iteration, the first step (Line 6) calculates the partial

derivative ∇xf(x
i, yi), and then identifies a subset of nodes
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via head projection that returns a support set with the head

value at least a constraint factor cH of the optimal head value:

“Γx = H(∇xf(x
i, yi))”. The support set Γx can be interpreted

as the directions where the nonconvex set “supp(x) ∈ M(k)”
is located, within which pursuing the maximization over y will

be most effective. The second step (Line 7) identifies the 2s

Algorithm 1 SG-Pursuit

1: Input: Network instance G and the parameters, including

k (maximum number of nodes in the subspace cluster)

and s (maximum size of selected features).

2: Output: The vectors of coefficients of nodes and at-

tributes, including xi and yi, and the identified subspace

cluster C.

3: ε = 0.0001 % The termination criterion of iterations

4: i = 0; xi, yi = initial vectors

5: repeat
6: Γx = H(∇xf(x

i, yi))
7: Γy = argmaxR⊆{1,··· ,p}{‖[∇yf(x

i, yi)]R‖22 : ‖R‖0 ≤
2s}

8: Ωx = Γx ∪ supp(xi)
9: Ωy = Γy ∪ supp(yi)

10: (bix, b
i
y) = argmaxx∈Cx,y∈Cy f(x, y) s.t. supp(x) ⊆

Ωx, supp(y) ⊆ Ωy

11: Ψi+1
x = T(bix)

12: Ψi+1
y = argmaxR⊆{1,··· ,p}{‖[biy]R‖22 : ‖R‖0 ≤ s}

13: xi+1 = [bix]Ψi+1
x

14: yi+1 = [biy]Ψi+1
y

15: i = i+ 1
16: until ‖xi − xi−1‖ ≤ ε and ‖yi − yi−1‖ ≤ ε
17: C = (Ψi

x,Ψ
i
y).

18: return xi, yi, C
nodes of the partial derivative vector ∇yf(x

i, yi) that have the

largest magnitude that are chosen as the directions in which

pursuing the maximization on y will be most effective: “Γy =
argmaxR⊆{1,··· ,p}{‖[∇yf(x

i, yi)]R‖22 : ‖R‖0 ≤ 2s}.” The

subsets Γx and Γy are then merged in Line 8 and Line 9
with the supports of the current estimates “supp(xi)” and

“supp(yi)”, respectively, to obtain “Ωx = Γx ∪ supp(xi)”
and “Ωy = Γy ∪ supp(yi)”. The combined support sets

define a subspace of x and y over which the function f(x, y)
is maximized to produce an intermediate solution in Line
10: “(bix, b

i
y) = argmaxx∈Cx,y∈Cy f(x, y) s.t. supp(x) ⊆

Ωx, supp(y) ⊆ Ωy.” Then a subset of nodes is identified

via tail projection of bix in Line 11: “Ψi+1
x = T(bix)”, that

returns a support set with the tail value at most a constant

cT times larger than the optimal tail value. A subset of

attributes of size s that have the largest magnitude is chosen

in Line 12 as the subset of relevant attributes: “Ψi+1
y =

argmaxR⊆{1,··· ,p}{‖[biy]R‖22 : ‖R‖0 ≤ s}.” As the final steps

of this iteration (Line 13 and Line 14), the estimates xi+1 and

yi+1 are updated as the restrictions of bix and biy on the support

sets Ψi+1
x and Ψi+1

y , respectively: “xi+1 = [bix]Ψi+1
x

” and

“yi+1 = [biy]Ψi+1
y

.” These steps are conducted to ensure that

the estimates xi+1 and yi+1 returned by each iteration always

satisfy the sparsity and topological constraints, respectively.

After the termination of the iterations, Line 17 identifies the

subspace cluster: C = (Ψi
x,Ψ

i
y), where Ψi

x represents the

subset (cluster) of nodes and Ψi
y represents the subset of

relevant attributes.

D. Theoretical Analysis

In order to demonstrate the accuracy and efficiency of

SG-Pursuit, we require that the score function f(x, y) sat-

isfies the Restricted Strong Concavity/Smoothness (RSC/RSS)

condition as follows:

Definition II.1 (Restricted Strong Concavity/Smoothness
(RSC/RSS)). A score function f satisfies the
(M(k), s, γ−, γ+)-RSS/RSC if, for every x, x′ ∈ R

n

and y, y′ ∈ R
p with supp(x) ⊆ M(2k), supp(x′) ⊆ M(2k),

|supp(y)| ≤ 2s, and |supp(y′)| ≤ 2s, the following
inequalities hold:

γ−

2

(‖x− x′‖22 + ‖y − y′‖22
) ≤

f(x′, y′)− f(x, y)−∇xf(x, y)
T (x′ − x)−∇yf(x, y)

T (y′ − y) ≤
γ+

2

(‖x− x′‖22 + ‖y − y′‖22
)
.

The RSC/RSC condition basically characterizes cost functions

that have quadratic bounds on the derivative of the objective

function when restricted to the graph-structured vector x and

the sparsity-constrained vector y. When the score function f
is a quadratic function of x and y, RSC/RSC condition degen-

eralizes to the restricted isometry property (RIP) that is well-

known in the field of compressive sensing. For example, we

consider the negative squared error function (2) as discussed in

Section II-A: f(x, y) = −‖c−WTx−y‖22. Let W̄ = [WT , I],
where I is a p by p identity matrix. Let z = [xT , yT ]T . The

RSC/RSC condition can be reformulated as the RIP condition:

(1− δ)‖z‖22 ≤ ‖W̄z‖22 ≤ (1 + δ)‖z‖22,
where γ+ = 2(1 + δ), γ− = 2(1 − δ), and δ ∈ (0, 1) is

the standard parameter as defined in RIP. However, the RIP

condition in this example is different from the traditional RIP

condition in that the components of z, including x and y, must

satisfy the constraints related to M(k) and the sparsity s as

described in Definition II.1.

Theorem II.1. If the score function f satisfies the prop-
erty (M(k), s, γ−, γ+)-RSS/RSC, then for any true
(x∗, y∗) ∈ R

n × R
p, the iterations of the proposed algorithm

SG-Pursuit satisfy the inequality

‖ri+1
x ‖2 + ‖ri+1

y ‖2 ≤ α
(
‖rix‖2 + ‖riy‖2

)
+ β(εx + εy)

where ri+1
x = xi+1 − x∗, ri+1

y = yi+1 − y∗, α0 =

cH(1 − ρ) − ρ, ρ =
√
1− (γ

−
γ+ ), β0 = (cH + 1) γ−

(γ+)2 ,

α =
(cT+1)

√
2−2α2

0

1−√2ρ
, β = (cT+1)

1−√2ρ

(
γ−

(γ+)2 +
(√

2α0β0

1−α2
0

+
√
2β0

α0

))
, εx = maxS∈M(2k) ‖[∇fx(x

∗, y∗)]S‖22, and εy =

maxR⊆{1,··· ,p},|R|≤3s ‖[∇fy(x
∗, y∗)]R‖22.

Proof: See the technical report [12] for details.
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Theorem II.2. Let (x∗, y∗) the optimal solution to Prob-
lem (1) and f be a score function that satisfies the
(M(k), s, γ−, γ+)-RSS/RSC property. Let T and H be the
tail and head projections with cT and cH such that 0 <

α < 1. Then after t =
⌈
log

(
‖x∗‖2+‖y∗‖2

εx+εy

)
/ log 1

α

⌉
iterations,

SG-Pursuit returns a single estimate (x̂, ŷ) satisfying

‖x̂− x∗‖2 + ‖ŷ − y∗‖2 ≤ c(εx + εy), (6)

where c = (1 + β
1−α ) is a fixed constant. Moreover,

SG-Pursuit runs in time

O
(
(T1 + T2 + p log p) log

(
(‖x∗‖2 + ‖y∗‖2)/(εx + εy)

))
, (7)

where T1 is the time complexity of one execution of the
subproblem in Line 10 in SG-Pursuit and T2 is the time
complexity of one execution of the head and tail projections.

In particular, when the connectivity constraint or a density
constraint is considered as the topological constraint on
the feasible clusters of nodes in M(k), there exist efficient
algorithms for the head and tail projections that have the
time complexity O(|E| log3 n) [12], [20]. When s and k are
fixed small constants with respect to n, the subproblem in
Line 10 in SG-Pursuit can be solved in nearly linear
time in practice using convex optimization algorithms, such
as the project gradient descent algorithm. Therefore, under
these conditions, for coherent dense subgraph detection and
connected anomalous subspace cluster detection problems,
SG-Pursuit has a nearly-linear time complexity on the
network size n and the cardinality of attributes p:

O
(
(|E| log3 n+ p log p) log ((‖x∗‖2 + ‖y∗‖2)/(εx + εy))

)
. (8)

Proof: From Theorem II.1, the following inequality can

be obtained via an inductive argument: ‖xi − x∗‖2 + ‖yi −
y∗‖2 ≤ αi(‖x∗‖2 + ‖y∗‖2) + β(εx + εy)

∑i
j=0 α

i. For i =⌈
log

(
‖x∗‖2+‖y∗‖2

εx+εy

)
/ log 1

α

⌉
, we have αi(‖x∗‖2 + ‖y∗‖2) ≤

(εx + εy). The geometric series
∑i

j=0 α
i can be bounded by

1
1−α . The error bound (6) can be obtained by combining the

preceding inequalities. The time complexity of the subproblem

in Line 10 is denoted by O(T1), and the time complexities of

both head and tail projections are denoted by O(T2). The time

complexity to solve the subproblem in Line 7 is O(p log p),
as the exact solution can be obtained by sorting the entries

in ∇yf(x
i, yi) in a descending order based their absolute

values, and then returning the indices of the top 2s entries.

Similarly, the time complexity to solve the subproblem in

Line 12 is O(p log p). As the total number of iterations is

O log(‖x
∗‖2+‖y∗‖2
εx+εy

), the time complexity specified in Equa-

tion (7) can be calculated. accordingly. When T1 is bounded

by O(n log n) and T2 = |E| log3 n, the nearly-linear time

complexity specified in Equation (8) can be obtained.

Theorem II.2 shows that SG-Pursuit enjoys

a geometric rate of convergence and the estimation

error is determined by the multiplier of (εx + εy),
where εx = maxS∈M(8k) ‖[∇fx(x

∗, y∗)]S‖22, and

εy = maxR⊆{1,··· ,p},|R|≤2s ‖[∇fy(x
∗, y∗)]R‖22. The shrinkage

rate α < 1 controls the converge rate of SG-Pursuit. In

particular, if the true x∗ and y∗ are sufficiently close to an

unconstrained maximum of f , then the estimation error is

negligible because both εx and εy have small magnitudes.

Especially, in the ideal case where εx = εy = 0, it is

guaranteed that we can obtain the true x and y to arbitrary

precision. Note that we can make γ+ and γ− as close as

we desire, such that γ+/γ− ≈ 1, since this assumption only

affects the measurement bound by a constraint factor. In this

case, in order to ensure that α ≈ (cT + 1)
√
2− 2ctH < 1,

the factors cT and cH should satisfy the inequality:

c2H > 1 − 1/
(
2(1 + cT )

2
)
. As proved in [19], the fixed

factor cH of any given algorithm for the head projection

can be boosted to any arbitrary constant c′H < 1, such

that the above condition can be satisfied. This indicates the

flexibility of designing approximate algorithms for head and

tail projections in order to ensure the geometric convergence

rate of SG-Pursuit.

Remark 3. (Connections to existing methods) SG-Pursuit
is a generalization of the GraSP (Gradient Support
Pursuit) method [5], a state-of-the-art method for gen-
eral sparsity-constrained optimization problems, and the
Graph-MP method [8], a state-of-the-art method for gen-
eral graph-structured sparse optimization problems. In par-
ticular, when we fix x and only update y in the steps of
SG-Pursuit, SG-Pursuit degeneralizes to GraSP. When
we fix y and only update x in the steps of SG-Pursuit,
SG-Pursuit degeneralizes to Graph-MP. Surprisingly,
even that SG-Pursuit concurrently optimizes x and y, its
convergence rate is of the same order as those of Graph-MP
and GraSP under the RSS/RSC property [12].

III. EXAMPLE APPLICATIONS

In this section, we specialize SG-Pursuit to address two

typical subspace cluster detection problems in multi-attributed

networks, including coherent dense subspace cluster detection

and anomalous connected subspace cluster detection. The

former searches for subsets of nodes that show high similarity

in subsets of their attributes and that are as well densely

connected within the input network. The coherence score

function, as shown in Table II, is defined as the log likelihood

ratio function, log Prob(Data|H1(x,y))
Prob(Data|H0)

, that corresponds to the

hypothesis testing framework:

• Under the null (H0), wi,j ∼ N (0, 1), ∀i ∈ V, j ∈
{1, · · · , p}, where wi,j refers to the observed value of the

j-th attribute of node i;
• Under the alternative H1(x, y), wi,j ∼ N (μj , 1), if xi = 1

and yj = 1; otherwise, wi,j ∼ N (0, σ), where x ∈ {0, 1}n,

y ∈ {0, 1}p, and xi = 1 indicates that node i belongs to the

cluster, yj = 1 indicates that the attribute j belongs to the

subset of coherent attributes. Each coherent attribute j has

a different mean μj and the variance σ should be less than

1 (the variance of an incoherent attribute) in order to ensure

the coherence of its observations. σ is set 0.01 by default.

The latter (anomalous connected subspace cluster detection)

searches for subsets of nodes that are significantly differ-

ent from the other nodes on subsets of their attributes and
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that are as well connected within the input network. The

elevated mean scan statistic, as shown in Table II, is defined

as the log likelihood ratio function that corresponds to a

hypothesis testing framework that is the same as the above,

except that 1) “coherent” is replaced by “anomalous”, 2) the

mean of each anomalous attribute is greater than (or more

anomalous than) 0, the mean of a normal attribute, and the

standard deviation of each anomalous attribute is set to 1 (the

same variance of a normal attribute). The Fisher test statistic

function is considered when each wi,j represents the level of

anomalous (e.g., negative log p-value) of the j-th attribute of

node i, and xTWy represents the overall level of anomalous

of x and y. A large class of scan statistic functions for

anomaly detection can be transformed to the fisher test statistic

function using a 2-step procedure as proposed in [31]. The

negative squared error is considered as the score function of

anomalous subspace cluster detection in a regression setting

and is introduced in Section II-A.

Theorem III.1. When the attribute matrix W satisfies certain
properties, the score functions, including the elevated mean
scan statistic, the Fisher’s test statistic, the negative square
error, and the logistic function, satisfy the RSS/RSC property
as described in Definition II.1.

Proof: See the technical report [12] for details.

Theorem III.1 demonstrates that the theoretical guarantees

of SG-Pursuit as analyzed in Section II-D are applicable

to a number of popular score functions for subspace cluster

detection problems. We note that SG-Pursuit also performs

well in practice on the score functions not satisfying the

RSS/RSC property as demonstrated in Section IV using the

coherence score function as shown in Table II.

TABLE II: Example score (interestingness) functions.
Score Function1 Definition
Coherence score xT

(
W �W

)
y− 1

0.01
xT

(
W − 1xTW

1T x

)
�

(
W −

1xTW
1T x

)
y − 1

2
‖x‖22 − 1

2
‖y‖22

Elevated mean scan
statistic

xTWy/
√
xT 1− 1

2
‖x‖22 − 1

2
‖y‖22

Fisher’s test statistic xTWy − 1
2
‖x‖22 − 1

2
‖y‖22

Negative square error −‖c−WT x− y‖22 − 1
2
‖x‖22 − 1

2
‖y‖22

Logistic function
∑p

i=1

(
yi log g(x

Twi) + (1 − yi) log(1 −
g(xTwi))

)
− 1

2
‖x‖22 − 1

2
‖y‖22

1 The L2 regularization component “− 1
2
‖x‖22 − 1

2
‖y‖22” is considered in each

score function to enforce the stability of maximizing the score function. W =
[w1, · · · , wn], � is a Hadamard product operator, and g(z) = 1/(1 + e−z).

IV. EXPERIMENTS

This section evaluates the performance of our proposed

method on the quality of the detected subspace clusters and

run-time on synthetic and real-world networks. The experi-

mental code and data sets are available from the Link [13].

A. Coherent dense subgraph detection

1) Experimental design: We compared SG-Pursuit with

two representative methods, including GAMer [16] and

FocusCO [30].

1. Generation of synthetic graphs: We used the same

generator of synthetic coherent and dense subgraphs as used

in the state-of-the-art FocusCO method [30], except that

the standard deviation (std) of coherent attributes was set to√
0.001, instead of 0.001, which makes the detection problem

more challenging. The settings of the other parameters used

in FocusCO include: pin = 0.35 (density of edges in each

cluster) and pout = 0.1 (density of edges between clusters).

We compared the performance of different methods based

on different combinations of parameters: 1) the number of

incoherent clusters, 2) the number of coherent attributes, 3)

the total number of attributes, and 4) cluster size. We set these

parameters to 9, 10, 100, 30, respectively, by default. We set

the size of all coherent and incoherent clusters to 30, as GAMer
was not scalable in the synthetic graphs for clusters of size

larger than 30. We generated one coherent dense cluster and

multiple incoherent dense clusters in each synthetic graph.

2. Real-world data. We used five public benchmark real-

world attributed network datasets, including DBLP, Arxiv,

Genes, IMDB, and DFB (German soccer premier league data),

which are available from and described in details in [40]. The

basic statistics of these five datasets are provided in Table III,

with the numbers of nodes ranging from 100 to 11,989; the

numbers of edges ranging from 1,106 to 119,258; and the

number of attributes ranging from 5 to 300.

3. Implementation and parameter tuning: The imple-

mentations of FocusCO and Gamer are publicly released

by authors 1. FocusCO requires an exemplar set of nodes

and has a trade-off parameter γ that is used in learning

of feature weights. In order to make FocusCO the best

competitive to our method, we used a random set of 90%
nodes in each coherent dense subspace cluster as the input

exemplar set of nodes. FocusCO estimates a weight for each

attribute that characterizes the importance of this attribute,

and return the top s attributes with the largest weights as

the set of coherent attributes, and set s to the true number

of coherent attributes. GAMer has four main parameters,

including smin (the minimum number of coherent attributes),

γmin (the minimum threshold on density), and nmin (the

minimum cluster size), and w (the maximum width that

control the level of coherence). We followed the recommended

strategies by the authors and identified the best parameter

values for FocusCO and Gamer. We did not consider other

related methods that focus on different objectives rather than

only cluster density (e.g., the normalized subspace graph cut

objective as considered in [17]) and also their implemenations

are not publically available.

4. Settings of our proposed method SG-Pursuit. We

used the following score function to detect the most coherent

dense subspace cluster in each synthetic graph: f(x, y) =

xT
(
W �W

)
y − 1

0.01x
T
(
W − 1xTW

1T x

)
�

(
W − 1xTW

1T x

)
y −

1
2‖x‖22 − 1

2‖y‖22 + λxTAx
1T x

, where A is the adjacency matrix

of the input graph, and λ is a tradeoff parameter to balance

to coherence score (See Table II) and the density score xTAx
1T x

.

The parameter λ was set to 5. We applied projected gradient

1Available at https://github.com/phanein/focused-clustering and http://dme.
rwth-aachen.de/en/gamer
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Fig. 4: Comparison on F-measures of detected nodes (first line) and of detected attributes (second line): (a) and (d) for changing

the total number of attributes (with 10 coherent attributes); (b) and (e) for increasing number of clusters (with one coherent

cluster); and (c) and (f) for changing cluster size variance (graph has variable size clusters), and measurements of Gamer are

not shown in these two sub-figures as Gamer is unscalable to detection of clusters of size above 30.

Fig. 5: Comparison on running time of synthetic graphs.

descent to solve the subprobelm in Line 10 of SG-Pursuit.

The parameters k (upper bound of the cluster size) and s
(upper bound on coherent attributes) were set to the true

cluster size and number of coherent attributes, respectively, in

the synthetic datasets. For the real-world datasets, we tested

the ranges k ∈ {5, 10, 15, 30} and s ∈ {3, 5, 10, 15, 20} and

identified the settings with the best objective scores. We note

that SG-Pursuit does not require training data with labeled

sub-space clusters to tune the parameters k and s.

5. Evaluation metrics. Each synthetic graph has a single

true coherent dense subspace cluster (a combination of a

subset of nodes and a subset of attributes) and the task was

to detect this cluster. We reported the F-measures of the

subsets of nodes and attributes for each competitive method.

We note that FocusCO and GAMer may return multiple

candidate clusters in an input graph, and in this case we

return the cluster with the highest F-measure in order to

make fair comparisons. We generated 50 synthetic graphs

for each setting and reported the average F-measure and

running time. For the five real-world attributed network

datasets, where no ground truth is given, we considered

three major measures, including average cluster density,

average cluster size, and average coherence distance. The

average cluster density is defined as the average degree of

nodes within the K subspace clusters identified, where K
is predefined. The coherence distance of a specific subspace

cluster is defined as the average Euclidean distance between

the nodes in this cluster based on the subset of attributed

selected. The average coherence distance is the average of the

coherence distances of the K subspace clusters. A combination

of a high average cluster density, a high average cluster size,

and a low average coherence distance indicates a high overall

quality of the clusters detected.

2) Quality Analysis: 1) Synthetic data with ground truth
labels. The comparison on F-measures among the three com-

petitive methods is shown in Figure 4, by varying total number

of irrelevant attributes, number of incoherent clusters, and

cluster size variance. The results indicate that SG-Pursuit
significantly outperformed FocusCO and GAMer with more

than 15 percent marginal improvements in overall on F-

measures of the detected nodes and the detect coherent at-

tributes. As shown in Figure 4(c), when the cluster size in-

creases, the F-measure of FocusCO consistently increases. In

particular, we observed that when the cluster size is above 150,

FocusCO achieved F-measure close to 1.0. In addition, when

the standard deviation of coherent attributes decreases (in the

shown Figures, we fixed this to
√
0.001), FocusCO performed

better for large cluster sizes. To summarize, SG-Pursuit
was more robust to FocusCO on low levels of coherence

and small cluster sizes. More detailed comparison results are

provided in our technical report [12]. 2) Real-world data. As

48



the real-world datasets do not have ground truth labels, we

can not apply FocusCO since it requires a predefined subset

of ground truth nodes. Hence, we focus on the comparison

between SG-Pursuit and GAMer with different predefined

numbers of clusters (Top-K,K = 5, 10, 15, 20) . As shown in

Table III, SG-Pursuit was able to identify subspace clusters

with the three major measures coherently better than those of

the clusters returned by GAMer in most of the settings. GAMer
was able to identify clusters with densities larger than those

detected by SG-Pursuit, but with much smaller cluster

sizes and much large coherence distances.

3) Scalability analysis: The comparison on running times

of competitive methods is shown in Figure 5 with respect to

varying numbers of attributes and nodes of synthetic graphs.

The results indicate that SG-Pursuit was faster than both

FocusCO and GAMer over several orders of magnitude. The

running time of FocusCO was independent of the number of

attributes, but increases quadratically on the number of nodes

(graph size). The running time GAMer increases quadratically

on both numbers of attributes and nodes.

B. Anomalous connected cluster detection
1) Experimental design: We considered two representative

methods, including AMEN [29] and SODA [18].

1. Data sets: 1) Chicago Crime Data. A data set of

crime data records in Chicago was collected form the official

website “https://data.cityofchicago.org/” from 2010 to 2014

that has 1,515,241 crime records in total, each of which has the

location information (latitude and longitude), crime category

(e.g., BATTERY, BURGLARY, THEFT), and description (e.g.,

“aggravated domestic battery: knife / cutting inst”). There are

35 different crime categories in total. We collected the census-

tract-level graph in Chicago from the same website that has

46,357 nodes (census tracts) and 168,020 edges (there exists an

edge if two census tracts neighbor with each other) in total, and

considered the frequency of each keyword in the descriptions

of crime records as an attribute. There are 121 keywords

in total that are non-stop-words and have frequencies above

10,000, which are considered as attributes. In order to generate

a ground-truth anomalous connected cluster of nodes, we

picked a particular crime type (BATTERY or BURGLARY),

identified a connected subgraph of size 100 via random walk,

and then removed the crime records of this particular category

in all nodes outside this subgraph, which generated a rare cate-

gory as an anomalous category. This subgraph was considered

as an anomalous cluster for crime records of categories that

are different from this specific category, and the keywords

that are specifically relevant to this category were considered

as ground-truth anomalous attributes. We tried this process

50 times to generate 50 anomalous connected clusters, and

manually identified 22 keywords relevant to BATTERY and

5 keywords relevant to BURGLARY as anomalous attributes.

2) Yelp Data. A Yelp reviews data set was publicly released

by Yelp for academic research purposes2. All restaurants and

reviews in the U.S. from 2014 to 2015 were considered,

2Available at http://www.yelp.com/dataset_challenge

which includes 25,881 restaurants and 686,703 reviews. The

frequencies of 1,151 keywords in the reviews that are non-

stop-words and have frequencies above 5,000 are considered

as attributes. We generated a geographic network of restaurants

(nodes), in which each restaurant is connected to its 10 nearest

restaurants, and there are 244,012 edges in total. We used the

sample strategy as in the Chicago Crime Data to generate

50 ground-truth anomalous connected clusters of size 100

for the specific category “Mexican”. 2. Implementation and
parameter tuning: The implementations of AMEN and SODA
are publicly released by the authors3. Their parameters were

tuned by the recommended strategies by the authors. For our

proposed method SG-Pursuit, we considered the elevated

mean statistic function as defined in Table II. The upper bound

of cluster size k was set to 100. The upper bound of number

of attributes s was set to 22 for BATTERY related anomalous

clusters and 5 for BURGLARY related anomalous clusters.

2) Quality and Scalability Analysis: The detection results

of the competitive methods on the Chicago Crime Data are

shown in Table IV. The results indicate that SG-Pursuit
outperformed SODA and AMEN on F-Measure of nodes with

more than 20% marginal improvements, and on F-measure

of attributes with around 15% marginal improvements. The

running time of SG-Pursuit was less than those of SODA
and AMEN on several orders of magnitude. The results of our

method on Yelp Data contain three parts: 1) The quality of

returned clusters: The F-measure of the returned clusters is

0.31 with the precision 0.314 and the recall 0.309; 2) The top

10 most frequent keyword pairs, i.e. (frequency, keyword),

returned are (21, “tacos”), (21, “asada”) (20, “taco”), (19,

“salsa”) , (19, “level”), (15, “vegas”) (14, “mexican”), (14,

“item”) (14, “beans”), and (13, “worth”), where the frequency

of a keyword refers to the number of times that this key-

word occurs in the anomalous subspace clusters detected by

SG-Pursuit. 6 out of 10 keywords are related to "Mexican",

which demonstrates that our method can identify the related

keywords on the specified category; 3) The running time of

our algorithm was 6.98 minutes. We were not able to obtain

results from AMEN and SODA after running several hours.

These baseline methods cannot handle graphs that have more

than 10,000 nodes and 1,000 attributes.

V. CONCLUSIONS

This paper presents SG-Pursuit, a novel generic algo-

rithm to subspace cluster detection in multi-attributed networks

with both theoretical and empirical validations. Although

SG-Pursuit enjoys rigorous guarantees when the score

function satisfies RSC/RSS conditions, we observe that a num-

ber of score functions that have been used for subspace cluster

detection, including the ones considered in the experiments, do

not satisfy RSC/RSS conditions. For the future work, we plan

to analyze theoretical properties of SG-Pursuit for score

functions under conditions that are weaker than RSC/RSS con-

3Available at https://github.com/phanein/amen/tree/master/amen and https:
//github.com/manavs19/subgraph-outlier-detection
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TABLE III: Analysis of five real-world datasets for coherent dense subspace cluster (subgraph) detection.

Dataset Node Edge Attribute Top-K
Avg. Cluster density Avg. Cluster Size Avg. Coherence Distance

SG-Pursuit GAMer SG-Pursuit GAMer SG-Pursuit GAMer

DFB 100 1106 5

5 9.69 5.4 10.8 6.4 0.13 6.38
10 9.94 3.9 11.0 4.9 0.13 7.41
15 11.03 3.33 12.07 4.33 0.12 7.51
20 10.55 2.9 11.6 3.9 0.12 8.25

DBLP 774 1757 20

5 4.12 3.2 5.2 4.2 0.0 0.0
10 3.84 3.2 5.7 4.2 0.06 0.0
15 3.25 3.17 7.3 4.17 0.3 0.0
20 3.34 3.17 7.68 4.17 0.4 0.0

IMDB 862 4388 21

5 3.24 4.96 4.6 10 0.0 0.0
10 3.17 4.52 5.67 10.0 0.08 0.0
15 3.52 2.97 5.79 4.27 0.06 0.0
20 3.36 2.78 5.37 4.2 0.06 0.0

Genes 2900 8264 115

5 3.76 6.92 24.8 10.6 0.29 8.28
10 3.74 5.91 24.7 10.8 0.31 5.46
15 3.82 5.58 23.09 10.87 0.33 4.69
20 3.85 5.36 21.83 10.9 0.33 4.2

Arxiv 11989 119258 300

5 11.53 4.16 15.8 10.0 0.0 0.0
10 9.65 4.24 12.4 10.0 0.0 0.0
15 9.03 4.23 11.27 10.0 0.0 0.0
20 8.72 4.21 10.7 10.0 0.0 0.0

TABLE IV: Chicago Crime data (Fm refers to F-Measure).
Methods type Node Fm Attribute Fm Running Time (s)

SODA BATTERY 0.476 0.146 7,997.893
BURGLARY 0.45 0.020 11,043.892

AMEN BATTERY 0.363 0.818 3,835.589
BURGLARY 0.337 0.800 4,265.449

SG-Pursuit BATTERY 0.683 0.955 73.998
BURGLARY 0.538 1.000 37.538

ditions. We also plan to generalize SG-Pursuit to subspace

cluster detection in heterogeneous networks.
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